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A method of predicting two forest stand structure attri- the ability of the regression equations to predict the stem
butes, basal area and aboveground biomass, from mea- map plot’s stand structure attributes was then evaluated.
surements of forest vertical structure was developed and The QMCH was found to explain the most variance in
tested using field and remotely sensed canopy structure the chronosequence data set’s stand structure attributes,
measurements. Coincident estimates of the vertical distri- and to most accurately predict the values of the same
bution of canopy surface area (the canopy height profile), attributes in the stem map data set. For the chrono-
and field-measured stand structure attributes were ac- sequence data set, the QMCH predicted 70% of variance
quired for two data sets. The chronosequence data set in stand basal area, and 80% of variance in aboveground
consists of 48 plots in stands distributed within 25 miles biomass, and remained nonasymptotic with basal areas
of Annapolis, MD, with canopy height profiles measured up to 50 m2 ha21, and aboveground biomass values up to
in the field using the optical-quadrat method. The stem- 450 Mg ha21. When applied to the stem-map data set, the
map data set consists of 75 plots subsetted from a single regression equations resulted in basal areas that were, on
32 ha stem-mapped stand, with measurements of their average, underestimated by 2.1 m2 ha21, and biomass val-
canopy height profiles made using the SLICER (Scan- ues were underestimated by 16 Mg ha21, and explained
ning Lidar Imager of Canopies by Echo Recovery) in- 37% and 33% of variance, respectively. Differences in
strument, an airborne surface lidar system. Four height the magnitude of the coefficients of determination were
indices, maximum, median, mean, and quadratic mean due to the wider range of stand conditions found in the
canopy height (QMCH) were calculated from the canopy chronosequence data set; the standard deviation of resid-
height profiles. Regressions between the indices and ual values were lower in the stem map data set than on
stand basal area and biomass were developed using the the chronosequence data sets. Stepwise multiple regres-
chronosequence data set. The regression equations devel- sion was performed to predict the two stand structure
oped from the chronosequence data set were then applied attributes using the canopy height profile data directly
to height indices calculated from the remotely sensed as independent variables, but they did not improve the
canopy height profiles from the stem map data set, and accuracy of the estimates over the height index approach.
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in the stand” (Maser, 1989, p. 231), is another function- The SLICER instrument is one of a new generation
ally and structurally critical component of the forest. The of systems (Aldred and Bonnor, 1985; Nilsson, 1996) that
canopy is responsible for the majority of material and en- augment traditional first-return laser ranging with a sur-
ergy exchanges with the atmosphere, a critical habitat for face lidar capability. In surface lidar, the power of the
forest biota, and a controlling influence over the micro- entire return laser signal is digitized, resulting in a wave-
climate of the forest interior. Increasingly, species verti- form that records the vertical distribution of the backscat-
cal position is recognized as a major determinant of suc- ter of laser illumination from all canopy elements (foliar
cessional status (Wierman and Oliver, 1979; Aber, 1979; and woody) and the ground reflection, at the wavelength
Bicknell, 1982; Gulden and Lorimer, 1985; Smith, 1986; of the transmitted pulse (1064 nm, in the near-infrared).
Oliver and Larson, 1996), and therefore canopy struc- The use of relatively large footprints (5–15 m) is de-
ture, the “organization in space and time, including the signed for the recovery of returns from the top of the
position, extent, quantity, type, and connectivity, of the canopy and the ground in the same waveform, while re-
aboveground components of vegetation” (Parker, 1995, maining small enough to be sensitive to the contribution
p. 78), plays a dynamic role in forest development. of individual crowns of eastern deciduous species. Cur-

Studies of forest development have focused on the rently, the SLICER system has been mounted on various
size and number of stems because they are conveniently aircraft platforms and flown over sites in a range of foot-
measured. Study of forest canopies has been hindered by print number and size configurations. Details of the
the difficulty of characterizing canopy structure (Nad- technical aspects of SLICER can be found in Blair et al.
karni and Parker, 1994), and various methods have been (1994) and Harding et al. (1994).
developed to do so from more easily obtained measure- Motivation for work relating forest attributes to lidar
ments such as tree diameter distributions (Mawson et. sensed canopy structure has been enhanced by the an-
al., 1976). A new remote sensing device developed at nouncement that VCL, the Vegetation Canopy Lidar mis-
NASA’s Goddard Space Flight Center, SLICER (Scan- sion, has been funded by NASA’s Earth System Science
ning Lidar Imager of Canopies by Echo Recovery) (Blair Pathfinder (ESSP) program (Dubayah, 1997). Scheduled
et al., 1994; Harding et al., 1994), is able to rapidly mea- to be launched in mid-2000, VCL will provide global
sure the vertical distribution of canopy surface area, coverage of surface LIDAR data similar to that used in
through the integration of laser altimetry and surface li- this study, with transects of contiguous 25 m footprints
dar (light detection and ranging) techniques. spaced every 2 km along the Earth’s surface.

Laser altimetry is an established technology for ob-
taining accurate, high resolution measurements of sur-

Objectivesface elevations (Krabill et al., 1984; Bufton et al., 1991).
This current work is part of a larger effort to verify theLaser altimetry is used to measure the distance between
ability of SLICER to accurately measure canopy heightthe sensor and the object sensed through the precise
profiles (Lefsky, 1997), to relate the canopy height pro-timing of the round-trip return time of the backscattered
files to simple stand structure attributes (this article), andreflection of a short duration pulse of laser light. The

first generation of laser altimeters for remote sensing of to relate changes in the canopy height profiles from a
vegetation were designed to record the height to the first 300-year chronosequence to the processes of stand dy-
surface intercepted by the laser over a relatively small namics (Lefsky, 1997). The aims of this article are: 1) to
sampling area, or footprint, usually less than 1 m in di- determine if estimates of two stand structure attributes,
ameter (Arp et al., 1982; Schrier et al., 1984; 1985; Rit- basal area and aboveground biomass, can be made using
chie et al., 1993; Menenti and Ritchie, 1994; Weltz et indices derived from field-measured canopy height pro-
al., 1994). Returns from the top surface of the forest can- files, 2) to determine if regression equations developed
opy were combined with subsequent measurements of from field-measured canopy height profile indices can
distance to the forest floor, obtained through gaps in the accurately predict the same two stand structure attri-
forest canopy, to infer the height of the dominant trees. butes when applied to indices derived from canopy
A more technically advanced version of this approach in- height profiles measured by SLICER, and 3) to deter-
volves recording, for each individual small footprint, the mine the relative power of stepwise multiple regression
distance to the first return from the upper surface of the using the elements of the CHP, and simple regression us-
vegetation, and to the last return from the ground sur- ing height indices, to predict basal area and above-
face. The distance between these two measurements is ground biomass.
inferred to be the vegetation height for each footprint.
Measurements made using these techniques have proved
useful for predicting canopy height, timber volume, and METHODS AND MATERIALS
forest biomass (Maclean and Krabill, 1986; Nelson et al.,

Overview1988a,b; Naesset, 1997a,b), species type (Jensen et al.,
Two data sets, stem map and chronosequence, each con-1987), and percent canopy cover (Ritchie et al. 1993;

Weltz et al., 1994). sisting of spatially coincident measurements of canopy
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and stand structure, were collected in the coastal plain of directly, and to estimate the above- ground woody bio-
mass of each plot through the use of an allometric equa-Maryland, USA. For both data sets, two stand structure
tion (Table 1). The equation used was that of Monk etattributes, basal area and aboveground biomass, were de-
al. (1970), which was developed in a forest of similarrived from field measurements of tree diameter at breast
composition:height. The canopy structure of the plots in both data

sets was quantified using the canopy height profile mea- log10 B51.975712.5371 log10 DBH, (1)
surement, the distribution of foliage as a function of

where B is the biomass per stem (g) and DBH is theheight. The canopy height profiles of plots in the chrono-
diameter at breast height (cm). Total biomass per unitsequence data were measured in the field using the opti-
area for each plot was calculated as the total biomass ofcal point-quadrat method of Aber (1979). The canopy
every measured stem, divided by the area of the plot.height profiles of plots in the stem map data set were
Monk et al. (1970) did not report the error of their re-measured by the SLICER scanning lidar instrument us-
gression coefficients.ing a processing algorithm based on the principles of the

The canopy height profile (CHP) variable used tooptical-quadrat method. Canopy height indices, including
describe canopy structure in this data set is a modifica-maximum, mean, median, and quadratic mean canopy
tion of MacArthur and Horn’s (1969) foliage height pro-height (QMCH), were calculated for plots from both
file (FHP) variable. While some investigators have mea-data sets using their associated canopy height profile
sured height profiles directly, through stratified clippingmeasurements. Regressions between canopy height indi-
(Fujimori, 1971) or point quadrat techniques (Warren-ces and basal area and aboveground biomass were devel-
Wilson, 1958; 1965; Miller, 1967; Ford and Newbould,oped using the chronosequence data set. These same
1971), these methods have largely been supplanted byregression equations were then applied to the remotely-
the optical-quadrat method. Using this method, opticalsensed height indices from the stem map data set, and
point quadrats are established and multiple observationsthe resultant estimates of basal area and biomass were
of vertical distance to first leaf intersection are made us-compared to those measured in the field.
ing a camera equipped with a zoom telephoto lens. This
distribution is used to estimate the cumulative percentData Collection and Preprocessing
cover of foliage as a function of height. The estimate of

Floristics cover is transformed into the vertical distribution of foliage
using a method that assumes that leaf angle is constantData used in this work were collected as part of a larger
and that the horizontal distribution of leaves is random.project describing the structural, floristic, and environ-

Using these assumptions the amount of foliage thatmental development of tulip-poplar stands. The tulip-
results in the observed changes in cover can be calcu-poplar association is the most common upland forest as-
lated, using an equation [(Eq. (2)] derived from the Pois-sociation in the coastal plain and much of the piedmont
son distribution:of mid-Atlantic North America, from the Carolinas to

New Jersey. Though variable in composition, tulip poplar FHPC(h)52ln(12cover(h)), (2)
(Liriodendron tulipifera) occurs at most stages of succes-

where FHPC(h) is the cumulative one-sided leaf surfacesion. Its life cycle begins with high populations of sweet
area (or LAI, leaf area index), expressed as a fraction ofgum (Liquidambar styriciflua) or tulip poplar following
projected ground area, above height h, and cover(h) isagricultural abandonment or timbering; these species
the fraction of sky not covered by foliage, above heightpersist for several decades. In mature stands, the canopy
h. The actual FHP is calculated from FHPC(h) by calcu-is composed of oaks, hickories, beech, and some tulip
lating the additional LAI at each height interval, with re-poplar, with a diverse complement of mid- and subca-
spect to that above it. The theory behind the original ap-nopy species. Pines (Pinus virginiana and P. taeda) are
plication of this technique is found in MacArthur andrarely a major component in these forests.
Horn (1969), and a validation of the method is presented

Chronosequence Data Set in Aber (1979).
The chronosequence data set consists of 48 plot observa- The FHP is the distribution of foliage surface area
tions from stands dispersed within a 25-mile radius of as a function of canopy height, from the ground to the
the Smithsonian Environmental Research Center (SERC), top of the canopy. In contrast, the canopy height profile
located in Edgewater, Maryland, USA (Brown and Par- (CHP) is the surface area of all canopy material, foliar
ker, 1994). Stand structure information for the chrono- and woody, as a function of height. Combining foliar and
sequence data set was collected using variable-sized plots nonfoliar materials was necessary so that field and re-
that were scaled roughly to the maximum height of the motely sensed canopy height profiles could be compared.
canopy; the average plot was 20 m350 m. In each plot, This is because the single-wavelength SLICER system
the species and breast-height diameters of all living cannot distinguish between various sources (bark, foliage,
woody plants less than or equal to 2 cm in diameter were soil) of backscattered illumination. In order to measure

the CHP in the field, the distribution of the height torecorded. These data were used to estimate basal area
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Table 1. Stand Attributes for the Chronosequence and Stemmap Data Sets

Dataset Chronosequence Stemmap

Stem data source 48 plot observations 75 plots
Subsetted from a

32 ha stemmap
Canopy height profile source Optical quadrat SLICER waveforms

method
Number of plots 48 75
Mean basal area (m2 ha21) 36.1 37.5a

Mean above-ground biomass 235.9 239.0a

(mg ha21)
Maximum canopy height (m)

Maximum 40.0 44.0
Mean 26.5 36.2
Minimum 4.0 30.0

Mean QMCH (m) 214.4 18.1

aBasal area and above-ground biomass reported for the stemmap data set are for predicted
2 cm stand structure attributes.

the first intersection of any canopy structure type is re- map data set, the georeferenced tree and SLICER wave-
form data were processed using programs written in IDLcorded, rather than only intersections of foliage. Either

canopy or foliage height profiles can be calculated as rel- (Interactive Data Language, Research Systems Inc, Boul-
der, Colorado). For this study, the transect of remotelyative (with the total vector scaled to 1) or absolute (with

the total vector scaled to the total leaf or plant area index sensed data was five laser footprints wide, with each
footprint nominally 10 m in diameter, and nominallyof the canopy). In this work relative canopy height pro-

files are used exclusively. spaced at 10 m intervals in along- and cross-track dimen-
sions. Data from the two outer footprint positions in

Stem Map Data Set the transect were discarded due to anomalous height
The stem map data set combines field observations of measurements. The anomalous height measurements are
forest stand structure with coincident remotely sensed thought to be due to low instrument signal-to-noise
observations of canopy structure. The measurements of caused by misalignment between the footprint crosstrack
basal area and biomass for this data set came from an scan pattern and the outer edges of the instruments re-
existing 32 ha stand at SERC in which every stem ceiver field-of-view. Three by three blocks of SLICER
greater than 20 cm dbh has been mapped. The SLICER footprints were selected from the central three of the
instrument was flown over the stand in September 1995, five cross track footprints (see Fig. 1b); each 333 block
in a five-beam cross-track configuration. The SLICER was considered to be a single plot. Of a possible 104
footprints were georeferenced by combining the ranging samples within the vicinity of the stem-mapped stand, 75
data with laser pointing and aircraft position data, ob- were selected for analysis. The remaining plots were elimi-
tained by a Inertial Navigation System and a kinematic nated due to their proximity to either the edge of the
Global Position System trajectory, respectively. The stem stem-mapped area, a clearing, or roads within the stand,
map and SLICER transects were then registered to a because they overlapped with other plots, or were in the
digital orthophoto quadrangle (Maryland DNR, 1991), vicinity of an instrumented tower within the stem map.
which was reprojected to the UTM projection (Fig. 1a). A mask was generated for each 333 block of
The stem map was geolocated by matching the roads as SLICER waveforms (Fig. 1b), to determine which stems
recorded on the photo to the areas without trees within fell within the area sensed by the instrument. The mask
the stem map, which are associated with the roads. After was fit to the outermost positions of the four corner
conversion of the georeferenced SLICER data to the waveforms, which were calculated as occurring 7.07 m
UTM projection, a systematic offset of unknown source from the center point of each corner waveform. All
was noted between forest edges in the orthophoto and stems within the mask were extracted and the total basal
as expressed by the SLICER canopy height profile. In area and biomass [as calculated using Eq (1)] of those
order to ensure proper registration between the stem stems was divided by the area of the mask, in hectares
map and the SLICER footprints, the SLICER data was (see Fig. 1b).
translated to match forest edges in the orthophotos. On Canopy height profiles for each plot in the stem map
this basis, the error in the relative positions of the stem data set were calculated using the plot’s nine SLICER
map and SLICER transects should be reduced to less waveforms. Validation of the SLICER system and the
than 15 m. processing software’s ability to remotely sense canopy

height profiles can be found in Lefsky (1997). Briefly, weTo calculate basal area and biomass from the stem
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Figure 1. A) Illustration of the
SLICER footprints overlain on the
SERC stem map and B) detail of
the sampling geometry.

hypothesized that the power of the backscattered laser but to estimate canopy cover, the ratio must be adjusted
to account for differences in ground and canopy reflec-illumination is subject to the same process of occlusion

observed in the field measurements of height to first in- tance at 1064 nm. We did this by assuming that the ratio
of canopy and ground reflectance is approximately 2:1.tersection, and modified the MacArthur–Horn method to

apply this approach to the SLICER return energy wave- The total horizontal canopy cover at each height incre-
ment can then be calculated, which allows the use of theforms. The most critical step in the modification of the

MacArthur–Horn routine was the separation of the por- MacArthur–Horn equation (Fig. 2b). The processing that
implements this algorithm was tested using four dissimi-tion of the waveform returned from the ground surface

from the balance of the waveform (Fig. 2a). The ratio of lar stands at SERC. A two-sample, uneven sample size,
Chi-square goodness-of-fit analysis was performed to de-the power of the “ground return” to the total signal

power is inversely proportional to the total canopy cover, termine if there were statistically significant differences
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Figure 2. Steps in the transformation of the lidar waveform into an estimate of the vertical distribution of canopy
surface area, the canopy height profile.

between field- and SLICER-derived canopy height pro- Comparison of Stemmap and Chronosequence Stand
Structure Attributesfiles. The canopy height profiles measured in the field

and from SLICER were statistically indistinguishable Stand structure attributes for the chronosequence data
set were measured considering all stems greater than 2(Lefsky, 1997). In this work, an interactive version of the

waveform processing algorithm was used to improve the cm. The stem map, in contrast, was mapped using a min-
imum diameter of 20 cm. To allow comparison of theidentification of the position of the ground return.
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attributes measured using the 20 cm and 2 cm limits, we
generated a set of 20 cm limit structure attributes for
the chronosequence data set, so that we had both 2 cm
and 20 cm limit stand structure attributes for that data
set. Using this data, we estimate that stems between 2
cm and 20 cm DBH account for 13% of total basal area
and 8% of aboveground biomass. Regressions with the
20 cm structure attributes as independent variables and
the 2 cm structure attributes as dependent variables
were performed. The resulting regression equations were
then evaluated for their suitability in estimating 2 cm
limit basal area and biomass from the 20 cm limit data;
that is, to determine if there was variability in the 2 cm
limit measurements that was not explained by the 20 cm

Figure 3. Regressions between field and SLICERlimit measurements, specifically in the range of condi-
measured quadratic mean canopy height (QMCH) fromtions over which we want to apply these equations.
Lefsky (1997). Field QMCH52.00210.798*SLICER
QMCH, R250.78.

Canopy Height Indices
To relate the field and remotely-sensed canopy height
profile measurements to the stand structure attributes, that work, a positive bias was noted in the equations re-
we reduced the vector information in the CHP to four lating the SLICER measurement of height indices to
height indices. We chose to use the following height in- field measurements. Subsequent reanalysis of that data
dices: maximum canopy height, mean canopy height, me- set indicates that intercepts of those equations are not
dian canopy height, and QMCH. In this discussion, the significantly different from zero, and their slopes are not
canopy height profile is treated as a vector of 1-m-high significantly different from 1.0. Therefore, no corrections
elements, with the value for each element equal to the were applied to the SLICER measured indices of canopy
fraction of the total profile in the height range of that structure in the current work. To evaluate the relation-
element. For example, the first element in the CHP vec- ships among the four height indices, we plotted them
tor represents the fraction of total canopy surface area against each other and calculated their r2 values, using
between 0 and 1 m above the ground. data from the chronosequence data set.

Maximum canopy height is calculated as the height
of the highest canopy height profile element that has a Linear Regression
value greater than zero. Median canopy height is calcu- Linear regression was used to develop equations relating
lated as the height of the highest element below which height indices to basal area and biomass (Objective 1).
no more than 50% of the total canopy height profile is Four equations were developed for both basal area and
distributed. Mean canopy height is calculated as the sum- aboveground biomass, one using each of the four height
mation of the product of the canopy height profile and indices, for a total of eight equations. Data for the devel-
the height of each element. The QMCH is defined as opment of the equations came from the chronosequence

data set, which has field-measured height indices. Re-
QMCH5! o

max. height

i
CHP[i]*i2, (3) gression between the height indices and aboveground

biomass indicated that there was a consistent, positive
correlation between the independent values and the vari-where CHP[i] is the fraction of total foliage at height I.
ance of the residuals, and therefore aboveground bio-Regressions between coincident field and SLICER
mass values were transformed using a square root. Tomeasurements of the maximum, median, and quadratic
assess the relative explanatory power of each height in-mean canopy height have previously been performed us-
dex, the r2 between each height index and both standing a data set of 12 plots in two eastern deciduous for-
structure attributes in the chronosequence data set wasests, as described in Lefsky (1997), where each of the
calculated, as well as the standard deviation of the resid-plots had both field and SLICER measurements of can-
uals. For the square-root transformed aboveground bio-opy structure. Among the 12 plots were four from the

chronosequence data set. Analysis at that time indicated mass, the r2 reported is for the transformed variable, all
other statistics were calculated using the back-trans-that SLICER-measured indices of height were closely

correlated with those measured in the field (field vs. formed predictions.
The resulting equations were then applied to theSLICER height, R2576%, median height, R2568%, qua-

dratic mean canopy height, R2578%, e.g., Figure 3). In SLICER-measured height indices from each plot of the
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stem map data set (Objective 2), to produce predicted measurements made using the 20 cm limit could accu-
stand structure attributes for that data set. The applica- rately predict 2 cm attributes (Figs. 4a and 4b). There-
bility of the regression equations to the stem map data fore, stand structure attributes for the plots from the
set was evaluated in two ways. For each equation we cal- stem map data set, which had been measured using a 20
culated the residual between the predicted and observed cm limit, were transformed using the resulting regression
(stem map) stand structure attributes, and the residuals’ equations, so that they could be compared directly to at-
mean and standard deviation. A final check on the appli- tributes from plots in the chronosequence data set.
cability of the chronosequence derived equations to the Height indices calculated from each plot’s CHP were
stem map data was performed using regression between highly correlated with each other, but maximum canopy
the values predicted for the stem map plots using each height was least well correlated with the other indices
of the equations, and those observed in the stem map (Fig. 5). High correlations between all of the height indi-
data set. The coefficients of these regressions were then ces and both stand structure attributes were observed as
tested to determine if they differed significantly from results of the regression analysis using data from the
those expected if the actual relationship was the identity chronosequence data set (Fig. 6). We then calculated es-
equation: timated stand attributes for the stem map data set, using

the equations from this chronosequence regression anal-Predicted5B01B1*Observed
ysis and height indices from the stem map data set (Fig.

where B050 and B151. Preliminary results indicated that 6). While correlation coefficients between the observed
the r2 values between the predicted and observed stand and these new predicted estimates of stand attributes
attributes for the stem map data set were smaller than were lower than the correlation coefficients obtained
those which were obtained for the regressions between when developing the original equations, other measures
the height indices and stand attributes made using the of the predictive power of these equations, such as the
chronosequence data set. One difference between the standard deviation of residuals, were similar (Tables 2
two data sets is the narrower range of conditions, of both and 3). The QMCH index was found to be the most reli-
stand attributes and height indices, in the stem map data able predictor of basal area and biomass when results
set. In order to determine if this was a factor in the from the stem map and chronosequence data sets were
lower r2 values, correlation coefficients between each of considered. Equations developed using stepwise multiple
height indices and each of the stand attributes were cal-

regressions explained as much variance as those resultingculated, for four data sets. These data sets were: all plots
from simple regression using the height indices, but theirfrom the chronosequence data set, all chronosequence
predictions of the stand attributes of the stem map plotsplots less than 30 m tall, all chronosequence plots greater
were not as accurate.than or equal to 30 m tall, and all stem map plots greater

than or equal to 30 m, which included all the stem
Prediction of 2 cm Stand Structure Attributesmap plots.
from 20 cm Stand Structure Attributes

Stepwise Multiple Regression Using the chronosequence data set, strong linear rela-
tionships were found between basal area and biomassStepwise multiple regression has been proposed as a
measured with the 2 cm limit and the same attributesmethod to predict basal area and stem volume from ver-
measured with the 20 cm limit. For both basal area andtical canopy profile measurements (Hyyppa and Pulli-
aboveground biomass (Figs. 4a and 4b) the relationshipsainen, 1994). Stepwise multiple regressions were per-
consist of a range of low values in which the two vari-formed to check if more variance in the stand structure

attributes was explained by linear combinations of the ables are weakly correlated, and a range of higher values
canopy height profile elements than by the indices de- in which the two variables are very strongly related. The
rived from it. These regressions were conducted using range of values found for each stand attribute from the
the elements of the canopy height profile, aggregated to stem map data (as measured using the 20 cm limit) are
11 4-m resolution bins, as the independent variables. For indicated on the graphs, and indicate the range over
example, the first independent variable was the fraction which we want to use the relationship. Within the range
of the CHP between 0 and 3 m above the ground. of stand structure attributes observed in the stem map

data set, the relationship between then 2 cm and 20 cm
limit indices remains highly correlated and linear. Re-RESULTS
gression equations for each attribute were developed us-

Overview ing only the data that fell within the range where the
relationship between the 20 cm and 2 cm measurementsRegression analysis between 20 cm and 2 cm stand attri-

butes indicated that basal area and aboveground biomass were well correlated. The equations developed are:
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height indices, the mean canopy height and the QMCH,
are the most highly correlated of the variables.

Relationship of Canopy Height Indices to Basal
Area and Biomass
For the chronosequence data set, all four height indices
considered in this work were highly correlated with both
basal area and aboveground biomass, with r2 values be-
tween 60% and 80% (Table 2a). In all cases, the correla-
tion between the height indices and aboveground biomass
was higher than the corresponding correlation between
the height indices and basal area. The standard devia-
tions of the residuals resulting from each regression are
lowest when the r2 values are highest. Of the four equa-
tions predicting basal area, the QMCH has the largest r2

value and the smallest standard deviation of residuals. Of
the four equations predicting aboveground biomass, max-
imum canopy height and the QMCH both explain 80%
of variance, but maximum canopy height has a smaller
standard deviation of residuals. The absolute differences
in these two indicators (r2 and the standard deviation of
residuals) between the height indices are small in magni-
tude, and the differences in r2 are nonsignificant statis-
tically.

The ability of each of the regression equations to
predict the basal area and biomass of plots in the stem
map data set was evaluated in several ways. Scatterplots
of predicted and observed basal area and biomass are
presented in Figure 6. For each stand attribute, the two
best equations were selected for inclusion in Figure 6 on

Figure 4. A) Comparison of basal area measured using a 2 the basis of the goodness-of-fit statistics presented in Ta-
cm and 20 cm minimum DBH limit calculated with data ble 2. Examination of the figures indicate that the vari-
from the chronosequence data set, and the observed range

ability of the stem map data set plots is similar to thatof basal areas (calculated with the 20 cm minimum DBH
of the chronosequence data set. However, the r2 valueslimit) in the stem map data set, and B) the same for

aboveground biomass. of the predicted vs observed regression equations are
much lower than those of the regression equations pre-
dicting stand attributes from height indices. This result

Basal Area2512.50310.809*Basal20, must be viewed within the context of the wider range of
conditions observed in the chronosequence plots. For ar2593%, P,0.001,
constant number of data points distributed around a lin-

Biomass2538.01610.934*Biomass20, ear relationship with a specified standard deviation, the
amount of variance explained by the linear relationship de-r2599%, P,0.0001.
clines with decreasing range of the independent variable.

These equations have been used to estimate 2 cm limit This effect is demonstrated by Table 3, which docu-
stand structure attributes for the stem map plots. All ments the coefficients of determination between each of
subsequent analyses are for 2 cm limit attributes. height indices and the two stand structure attributes for

the four data sets defined in the methods. The high de-
Relationships among Canopy Height Indices termination coefficients obtained using the entire chro-
High levels of correlation were found between each of nosequence data set are maintained in the subset of plots
the four canopy height indices, as illustrated in Figure 5, shorter than 30 m tall. In every case but one (QMCH
but there was some variability. Maximum canopy height and basal area), determination coefficients drop when
has the lowest correlation to the other variables, espe- chronosequence plots equal to or taller than 30 m are
cially for taller stands. Median canopy height is highly considered. When these determination coefficients are

compared to those calculated using the stem map datacorrelated to the two mean height indices. The two mean
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Figure 5. Scatterplots comparing each of the four height indices from the chronosequence data set to each
other. N548.

set, differences still exist, but they are much smaller than area and biomass, mean canopy height and the QMCH
have the mean residual values with the lowest mag-the differences obtained when the stem map plots are

compared to the total chronosequence data set. nitudes.
The standard deviation of residual values for theAnother index of the strength of the relationships in-

clude the mean and standard deviation of residuals. The basal area equations ranged between 4.4 and 6.5 m2

ha21, and were in each case lower than those observedmean residual indicates the total accuracy of all the pre-
dictions made with an equation, while the standard devi- in the original regressions. Although the differences be-

tween the equations are small in magnitude, they do rep-ation of residuals indicates the ability of each equation
to predict individual values. The mean residual values for resent meaningful differences when compared to the

standard deviation of the dependent variable, basal area,the basal area equations resulted in a error between
29.9 and 7.2 m2 ha21 , or between 225% and 119% of which is 5.5 m2 ha21. The equation that uses the median

canopy height has residuals who standard deviation isthe mean basal area for the stem map plots. The mean
residual values for the aboveground biomass equations larger that 5.5 m2 ha21, due to its extremely poor fit. The

reduction of the standard deviation from 5.5 to 5.3 m2resulted in a error between 2130.1 and 80.2 Mg ha21 ,
or between 234% and 21% of the mean biomass for the ha21 represents a 7% reduction in variance, while the re-

duction from 5.5 to 4.4 represents a 37% reduction. Sim-stem map plots. Of the four equations predicting basal
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Figure 6. Scatterplots of predicted vs. observed basal area (a–c) and biomass (d–f), for the chronosequence and stem map
data sets, as predicted from the two best height index regression equations, and by stepwise multiple regression. Dashed line
indicates the identity line; solid line indicates the predicted vs. observed regression for the stem map data set.

ilarly, the standard deviation of the stem map biomass and 32 m above the ground, and between 36 m and 40
m above the ground. The three slope coefficients appearvalues is 56.4 Mg ha21. The equations using maximum

and median canopy height have residuals whose standard to increase exponentially as a function of height. The
equation predicting basal area explains nearly as muchdeviation is larger than 56.4 Mg ha21, also due to their

poor fit. The reduction of the standard deviation of bio- variance as the most correlated height index (69% vs.
70% for the QMCH), and has a lower standard deviationmass residuals from 56.4 to 50.9 Mg ha21 represents a

20% reduction in variance, while the reduction of the of residuals then any height index (7.7 m2 ha21 vs. 7.8 m2

ha21 for QMCH). The equation predicting abovegroundstandard deviation from 56.4 to 46.7 Mg ha21 represents
a 33% reduction in variance. Of the four equations pre- biomass explains slightly more variance than as the most

correlated height indices (81% vs. 80% for maximumdicting basal area, the QMCH and the mean canopy
height had the lowest standard deviation of residuals. canopy height and QMCH), and also has a lower stan-

dard deviation of residuals then any height index (61.4The QMCH and the mean canopy height also had the
lowest standard deviation of residuals of the four equa- Mg ha21 vs. 75.4 Mg ha21).

The equations derived from the stepwise multipletions predicting aboveground biomass.
Of the predicted vs. observed regression for the four regression were then applied to the stem map data set

(Table 2B). Both equations have residual statistics thatequations predicting basal area, both the maximum and
median canopy height had a slope and intercept signifi- were near the best of the height index equations. The

predicted vs. observed regressions for both basal area andcantly different from 1 and 0, respectively. The other
equations had non-significant p-values of similar magni- biomass had intercepts that were significantly different

from what would be expected, assuming the identity re-tude. Of the four equations predicting biomass, the
equations using maximum, median, and mean canopy lationship (see Fig. 6), and the equation predicting basal

area had a slope that was also significantly different.height had either one or both coefficients that were sig-
nificantly different from those expected.

DISCUSSIONStepwise Multiple Regression
Relationship of Canopy Height Indices to BasalResults from the stepwise multiple regression analysis
Area and Biomassare presented in Table 2B. The equations predicting

basal area and biomass make their predictions from the The development of equations relating height indices to
basal area and biomass indicated that, although theresame three variables, the fraction of the total profile be-

tween 16 m and 20 m above the ground, between 28 m were some differences in the predictive ability of the
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Table 2. Regression Equations for Linear (A) and Stepwise Multiple Regressions (B)a

A. Results of Linear Regressions

Application of Regressions to Stemmap Data (n575)

Predicted vs. Observed
Values for the Stemmap

Data Set
Residual Statistics (Observed5B01B1 Predicted)Stdevb

Dependent of Mean Stdevb of B0 B1

Variable Equation r2 Residual Residual Residuals r2 P(B050) P(b151)

Original Regressions Using Field Data from
the Chronosequence Data Set (n548)

Basal area 7.8411.07*Maximum 60% 8.9 29.9 5.3 16% 9.3 0.60
(m2/ha) Canopy Height p,0.0001 p50.02 p,0.0001

9.8012.13*Median 66% 8.3 7.2 6.5 3% 31.2 0.22
Canopy Height p,0.0001 p,0.0001 p,0.0001

6.3412.30*Mean Canopy 65% 8.3 1.9 4.7 28% 3.4 0.96
Height p,0.0001 p50.36 p50.68

6.0512.08*QMCH 70% 7.8 22.1 4.4 37% 24.8 1.1
p,0.0001 p50.17 p50.47

Biomass (2.7710.44*Maximum 80% 73.9 2130.1 62.1 20% 87.8 0.41
(mg/ha) Canopy Height)2 p,0.0001 p50.001 p,0.0001

(4.7810.79*Median 70% 91.6 80.2 68.1 0% 220.7 0.12
Canopy Height)2 p,0.0001 p,0.0001 p,0.0001

(3.1610.88*Mean 73% 89.0 28.4 50.8 21% 80.8 0.75
Canopy Height)2 p,0.0001 p50.002 p50.019

(2.9010.80*QMCH)2 80% 75.1 216.5 46.7 33% 28.1 0.83
p,0.0001 p50.22 p50.07

B. Results of Stepwise Multiple Regression

Application of Regressions to Stemmap Data (n575)

Predicted vs. Observed
Values for the Stemmap

Data Set
Residual Statistics (Observed5B01B1 Predicted)Stdevb

Dependent of Mean Stdevb of B0 B1

Variable Equation r2 Residual Residual Residuals r2 P(B050) P(b151)

Original Regressions Using Field Data from
the Chronosequence Data Set (n548)

Basal area 21.51(49.1*CHP[16:.20]) 69% 7.7 6.0 4.5 35% 10.6 0.854
(m2 ha) 1(156.2*CHP[28:32]) p,0.0001 p50.004 p50.123

1(244.8*CHP[36:40])
Biomass 91.11(403.2*CHP[16:20]) 81% 61.4 50.2 45.8 36% 86.3 0.81

(ng/ha) 1(1597.0*CHP[28:32]) p,0.0001 p,0.0001 p50.004
1(4109.8*CHP[36:40])

a Columns 1–4 record the name of the dependent variable, the regression equation for each height index, and the r2 and standard deviation of
residuals for equations developed using data from the chronosequence data set (n548). Columns 5 and 6 record the mean and standard deviation
of residuals which result from the application of each equation to height indices from the stemmap dataset (n575). Columns 7–9 record the r2 and
coefficients of regression between predicted and observed basal area and biomass from the stemmap data set, and the significance of the difference
betweeen the observed “predicted–observed” regression, and identity.

b Stdev5standard deviation.

height indices, those differences were small, and statisti- wood density and stem volume, and stem volume is a
function of the product of stem basal area and height.cally nonsignificant. Nevertheless, the canopy structure

information summarized in the median, mean, and qua- This means that, on a per stem basis, biomass must in-
crease as a function of DBH to a power greater than 2,dratic mean canopy height indices did improve their esti-

mates of stand basal area, albeit nonsignificantly, relative as in Eq. (1). In practice, this means that, as a function
of stem diameter, stem biomass increases more steeplyto the maximum canopy height. Maximum canopy height

was as good or better than the other variables at pre- than stem basal area. As an example, the ratio of the
basal areas of stems 95 cm and 2 cm in diameter isdicting aboveground biomass. This reflects a difference

in what the two attributes (basal area and biomass) rep- 2060:1, while the ratio of the biomass of those two stems
is 16,000:1, an eightfold increase. As a result, the relativeresent, and in how they are calculated. Basal area, as the

name suggests, is a two-dimensional measurement, and contribution of large stems to aboveground biomass is
greater than their relative contribution to basal area.increases, on a per stem basis, as a function of DBH

squared. Biomass is three-dimensional, the product of Height indices that mostly reflect the height of the
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Table 3. Comparison of Coefficients of Determination for Four Data Setsa

Chrono- Chrono- Chrono-
Dependent Independent sequence sequence sequence Stemmap
Variable Variable All Plots Plots,30 m Plots>30 m Plots>30 m

Basal area
Maximum CH 60% 47% 24% 16%
Median CH 66% 44% 40% 3%
Mean CH 65% 40% 35% 28%
QMCH 70% 44% 46% 37%

Biomass
Maximum CH 80% 72% 39% 20%
Median CH 70% 67% 18% 0%
Mean CH 73% 63% 15% 21%
QMCH 80% 69% 29% 33%

Number of plots 48 24 24 75

a All chronosequence plots, chronosequence plots less than 30 m tall, chronosequence plots greater than or equal to 30 m tall, and all stemmap
plots greater than or equal to 30 m tall. Canopy height is abbreviated by CH.

largest trees in a stand, such as maximum canopy height [Eq (3)]. This suggests the canopy height profile is being
weighted by a factor that is proportional to the diameterand the QMCH, should be most highly correlated with
required to support it, and conversely its average isbiomass. Conversely, basal area is more sensitive to the
transformed, by the square root, to a variable that is pro-number and size of smaller stems. Indices which take
portional to height.into account the average position of foliage, such as the

The application of regression equations, developedmedian, mean, and quadratic mean canopy height, should
using the chronosequence data set, to the stem map databe more highly correlated with basal area. This is be-
set indicated that there were relevant differences in thecause these indices represent the average height of all
equations suitability. The QMCH and mean canopy heighttrees, not just the largest ones. The QMCH index in-
were the best predictors of basal area for plots in thecludes information about the distribution of tree heights,
stem map, but the QMCH is marginally superior in allunlike maximum canopy height, but weights the impor-
but one aspect (mean residual) of regression quality. Fortance of the taller tree heights, unlike mean or median
the prediction of biomass, the QMCH and maximumcanopy height. This may explain why it is highly corre-
canopy height are very similar in terms of regressionlated with both stand structure attributes. The relative
quality, but when applied to the stem map data thecontribution of large stems to biomass and basal area
equation using mean canopy height has a higher standardmay also explain why the correlation coefficients be-
deviation of residuals, and the slope and intercept of thetween the height indices and biomass are larger than the
predicted vs. observed regression line for the mean can-correlations between the height indices and basal area.
opy height is significantly different from the identity line.The quadratic mean canopy height is an index devel-
While the r2 values associated with the stem map dataoped during the course of this work, and has no litera-
set were lower than those associated with the chrono-ture supporting it. Its development was suggested by the
sequence data set, this is due to differences in the rangequadratic mean diameter used in forest mensuration—
of conditions found in each data set, not the strength ofthe diameter of the tree with the average basal area. The
relationships relating height indices to stand structureQMCH, as defined earlier [Eq. (3)], is the square root of
attributes.the summation of the product of the canopy height profile

and each element’s squared height. Niklas (1996) re-
Stepwise Multiple Regressionports that for a data set of angiosperm “champion” trees,

the relationship between tree height and diameter is The objective of the stepwise multiple regression analysis
was to see if the individual elements of the canopy heightH519.1D0.474,
profile could improve the predictions of stand structure

transforming to predict diameter results in attributes, as compared with simple regressions using
height indices. The stepwise multiple regressions ex-D5(H/19.1)2.1.
plained as much variance as linear regression with can-

Note the similarity of the exponent of the transformed opy height indices, but the resulting equations were less
equation to the square power used to weight the ele- applicable to the stem map data set than the best height
ments of the canopy height profile, and the similarity of index, the QMCH. Working with a data set of canopy
the exponent of the first equation to the square root height profiles for two sites with differing composition,

Lefsky (1997) suggests that the height index approach isused to transform the weighted canopy height profile
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qualitatively preferable, because it is probably less site r2 values for equations developed with the chrono-
sequence data reflects its wider and more uniform distri-specific than predictions made directly from the canopy
bution of conditions.height profile. That the percentage of variance explained

We have seen that the regressions relating the fieldby each approach is similar is indicative that the height
measured QMCH index to basal area and biomass areindex approach is probably explaining as much variance
applicable to remotely sensed height indices, for theas can be explained.
range of stand conditions observed in the stem map data
set. Can this conclusion be applied to the whole rangeHeight Index Approach
of conditions found in the chronosequence data set? If

The height index approach used in this work is similar the error in the remotely sensed QMCH estimate is con-
to that previously used in the analysis of first-return laser stant throughout the range of canopy structure condi-
altimeters. Many approaches to the analysis of that data tions, we can. At present, no direct evidence is available
have followed the work of Maclean (1982), who showed to answer this question. Some steps in the processing of
that the area between a line following the height of the the raw waveform data, such as the delineation of the
canopy, and another following the ground surface, is ground return, could tend to introduce a constant error
closely and linearly related to the natural logarithm of into the estimates of the canopy height profile, which
stand volume. The area between these two lines mea- will have an larger proportional effect on shorter stands,
sures the average height of the upper surface of the can- but such an effect has not yet been identified. If the abil-
opy. Large footprint surface lidar systems, such as the ity to remotely sense the canopy height profile is con-
one used in this article, do not provide a high resolution stant, it is logical to conclude that the overall strength
record of this measurement. However, within the large and the coefficients of the relationship between remotely
footprint waveform, the distribution of vertical surfaces sensed height and field-collected stand structure attri-
is recorded. A weighted height index performs the same butes is the same as that found between optical-quadrat
function as the canopy height trace—except that it inte- method height indices and stand structure indices.

When considered along with the results of Lefskygrates the height distribution of the entire canopy, not
(1997) which concludes that field and SLICER sensedjust its outer surface, as in Naesset (1997a). The canopy
canopy height profiles were statistically indistinguishable,height profile transformation further serves to correct
this work supports the premise that SLICER and fieldthe vertical distribution of returned power to reflect the
collected profiles are directly comparable. If the successpower available for return from the canopy at each suc-
in validating SLICER is extended to other forest types,cessive level through the canopy. The fact that a height
it would provide an unprecedented level of flexibility inindex (the QMCH) that is weighted towards the top of
developing remote sensing applications using surface li-the canopy does better than one that isn’t suggests that
dar techniques. Whereas conventional optical and radarthe height of the upper canopy surface may still be an
remote sensing platforms do not have conveniently mea-important index for predicting stand attributes.
sured field analogues for their measurements, existing re-The value of the coefficient of determination be-
lationships between maximum canopy height and foresttween the stand structure attributes and height indices
ecosystem structure and function can be applied directlyfor both data sets are consistent with those reported in
to surface lidar remote sensing. For those forest typesthe laser altimetry literature (Maclean, 1982; Nelson et
where the MacArthur–Horn technique can be applied,al., 1988a,b; Nilsson, 1996; Hyyppa and Hallikainen, 1996;
field estimates of the canopy height profile can offerNaesset, 1997a). A determination coefficient (r2) of 61% “proof of concept” support to new analyses, without the

has been reported for the prediction of basal area (Hy- difficulty of obtaining laser altimetry and geolocating the
yppa and Hallikainen, 1996), while values between 53% laser footprints in the field, although the 15 m error in
and 92% have been reported for the prediction of stem footprint position did not seem to overly effect this cur-
volume and biomass. We calculated an adjusted r2 of rent work. Current work to establish a laser altimetry
70% for basal area and an adjusted r2 of 80% of biomass profile measurement capability for use in the field will
for the chronosequence generated regression equations. increase the desirability of this approach.
While these equations were developed using field esti-
mates of canopy structure, we have shown that they are

CONCLUSIONSapplicable to the prediction of stand structure attributes
from canopy height indices measured using the SLICER Indices measuring the vertical distribution of canopy
scanning lidar system. While the r2 values of the predic- structure are highly correlated with stand basal area and
tions of basal area and biomass of plots from the stem aboveground biomass. Relationships developed using field
map data set were lower than those obtained with the measured canopy height profiles were found to be appli-
chronosequence data set, the standard deviation of the cable, in varying degrees, to remotely sensed canopy height

profiles. The quadratic mean canopy height (QMCH) wasresiduals for both data sets are nearly equal. The higher
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in the Next Decade II: Sources and Applications, ASPRS,the height index which was both highly correlated to
Washington, DC, pp. 11–112.both basal area and aboveground biomass, and had the

Ford, E. D., and Newbold, P. J. (1971), The leaf canopy of abest overall predictions of the stand attributes of the re-
coppiced deciduous woodland. J Ecol. 59:842–862.motely sensed data set. We find that reasonable because

Fujimori, T. (1971), Analysis of forest canopy on the basis ofthe QMCH is a weighted average of the canopy height
a Tsuga heterophylla forest. Jpn. J. Ecol. 21:134–139.

profile, where the weights are proportional to the Gulden, J. M., and Lorimer, C. G. (1985), Crown differentia-
amount of woody structure required to support foliage at tion in even-aged Northern Hardwood forest of the great
each height. Stepwise multiple regression of basal area lakes region. For. Ecol. Manage. 10:65–86.
and biomass using the canopy height profile vector as in- Harding, D. J., Blair, J. B., Garvin, J. G., and Lawrence, W. T.
dependent variables did increase the power of the field- (1994), Laser altimeter waveform measurement of vegeta-

tion canopy structure. In Proceedings of IGARSS’94, Pasa-measured regression equations, but were not as applica-
dena, CA, Vol. II, 1250–1253.ble to the remotely sensed data set as was the QMCH.
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